67 research outputs found

    A nonsense mutation in B3GALNT2 is concordant with hydrocephalus in Friesian horses

    Get PDF
    Background: Hydrocephalus in Friesian horses is a developmental disorder that often results in stillbirth of affected foals and dystocia in dams. The occurrence is probably related to a founder effect and inbreeding in the population. The aim of our study was to find genomic associations, to investigate the mode of inheritance, to allow a DNA test for hydrocephalus in Friesian horses to be developed. In case of a monogenic inheritance we aimed to identify the causal mutation. Results: A genome-wide association study of hydrocephalus in 13 cases and 69 controls using 29,720 SNPs indicated the involvement of a region on ECA1 (P T corresponding to XP_001491595 p.Gln475* was identical to a B3GALNT2 mutation identified in a human case of muscular dystrophy-dystroglycanopathy with hydrocephalus. All 16 available cases and none of the controls were homozygous for the mutation, and all 17 obligate carriers (= dams of cases) were heterozygous. A random sample of the Friesian horse population (n = 865) was tested for the mutation in a commercial laboratory. One-hundred and forty-seven horses were carrier and 718 horses were homozygous for the normal allele; the estimated allele frequency in the Friesian horse population is 0.085. Conclusions: Hydrocephalus in Friesian horses has an autosomal recessive mode of inheritance. A nonsense mutation XM_001491545 c.1423C>T corresponding to XP_001491595 p.Gln475* in B3GALNT2 (1: 75,859,296-75,909,376) is concordant with hydrocephalus in Friesian horses. Application of a DNA test in the breeding programme will reduce the losses caused by hydrocephalus in the Friesian horse population

    Lack of high BMI-related features in adipocytes and inflammatory cells in the infrapatellar fat pad (IFP)

    Get PDF
    BACKGROUND: Obesity is associated with the development and progression of osteoarthritis (OA). Although the infrapatellar fat pad (IFP) could be involved in this association, due to its intracapsular localization in the knee joint, there is currently little known about the effect of obesity on the IFP. Therefore, we investigated cellular and molecular body mass index (BMI)-related features in the IFP of OA patients. METHODS: Patients with knee OA (N = 155, 68% women, mean age 65 years, mean (SD) BMI 29.9 kg/m2 (5.7)) were recruited: IFP volume was determined by magnetic resonance imaging in 79 patients with knee OA, while IFPs and subcutaneous adipose tissue (SCAT) were obtained from 106 patients undergoing arthroplasty. Crown-like structures (CLS) were determined using immunohistochemical analysis. Adipocyte size was determined by light microscopy and histological analysis. Stromal vascular fraction (SVF) cells were characterized by flow cytometry. RESULTS: IFP volume (mean (SD) 23.6 (5.4) mm(3)) was associated with height, but not with BMI or other obesity-related features. Likewise, volume and size of IFP adipocytes (mean 271 pl, mean 1933 μm) was not correlated with BMI. Few CLS were observed in the IFP, with no differences between overweight/obese and lean individuals. Moreover, high BMI was not associated with higher SVF immune cell numbers in the IFP, nor with changes in their phenotype. No BMI-associated molecular differences were observed, besides an increase in TNFα expression with high BMI. Macrophages in the IFP were mostly pro-inflammatory, producing IL-6 and TNFα, but little IL-10. Interestingly, however, CD206 and CD163 were associated with an anti-inflammatory phenotype, were the most abundantly expressed surface markers on macrophages (81% and 41%, respectively) and CD163(+) macrophages had a more activated and pro-inflammatory phenotype than their CD163(-) counterparts. CONCLUSIONS: BMI-related features usually observed in SCAT and visceral adipose tissue could not be detected in the IFP of OA patients, a fat depot implicated in OA pathogenesis

    A behavioral comparison of male and female adults with high functioning autism spectrum conditions

    Get PDF
    Autism spectrum conditions (ASC) affect more males than females in the general population. However, within ASC it is unclear if there are phenotypic sex differences. Testing for similarities and differences between the sexes is important not only for clinical assessment but also has implications for theories of typical sex differences and of autism. Using cognitive and behavioral measures, we investigated similarities and differences between the sexes in age- and IQ-matched adults with ASC (high-functioning autism or Asperger syndrome). Of the 83 (45 males and 38 females) participants, 62 (33 males and 29 females) met Autism Diagnostic Interview-Revised (ADI-R) cut-off criteria for autism in childhood and were included in all subsequent analyses. The severity of childhood core autism symptoms did not differ between the sexes. Males and females also did not differ in self-reported empathy, systemizing, anxiety, depression, and obsessive-compulsive traits/symptoms or mentalizing performance. However, adult females with ASC showed more lifetime sensory symptoms (p = 0.036), fewer current socio-communication difficulties (p = 0.001), and more self-reported autistic traits (p = 0.012) than males. In addition, females with ASC who also had developmental language delay had lower current performance IQ than those without developmental language delay (p<0.001), a pattern not seen in males. The absence of typical sex differences in empathizing-systemizing profiles within the autism spectrum confirms a prediction from the extreme male brain theory. Behavioral sex differences within ASC may also reflect different developmental mechanisms between males and females with ASC. We discuss the importance of the superficially better socio-communication ability in adult females with ASC in terms of why females with ASC may more often go under-recognized, and receive their diagnosis later, than males

    Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chicken (<it>Gallus gallus</it>), like most avian species, has a very distinct karyotype consisting of many micro- and a few macrochromosomes. While it is known that recombination frequencies are much higher for micro- as compared to macrochromosomes, there is limited information on differences in linkage disequilibrium (LD) and haplotype diversity between these two classes of chromosomes. In this study, LD and haplotype diversity were systematically characterized in 371 birds from eight chicken populations (commercial lines, fancy breeds, and red jungle fowl) across macro- and microchromosomes. To this end we sampled four regions of ~1 cM each on macrochromosomes (GGA1 and GGA2), and four 1.5 -2 cM regions on microchromosomes (GGA26 and GGA27) at a high density of 1 SNP every 2 kb (total of 889 SNPs).</p> <p>Results</p> <p>At a similar physical distance, LD, haplotype homozygosity, haploblock structure, and haplotype sharing were all lower for the micro- as compared to the macrochromosomes. These differences were consistent across populations. Heterozygosity, genetic differentiation, and derived allele frequencies were also higher for the microchromosomes. Differences in LD, haplotype variation, and haplotype sharing between populations were largely in line with known demographic history of the commercial chicken. Despite very low levels of LD, as measured by r<sup>2 </sup>for most populations, some haploblock structure was observed, particularly in the macrochromosomes, but the haploblock sizes were typically less than 10 kb.</p> <p>Conclusion</p> <p>Differences in LD between micro- and macrochromosomes were almost completely explained by differences in recombination rate. Differences in haplotype diversity and haplotype sharing between micro- and macrochromosomes were explained by differences in recombination rate and genotype variation. Haploblock structure was consistent with demography of the chicken populations, and differences in recombination rates between micro- and macrochromosomes. The limited haploblock structure and LD suggests that future whole-genome marker assays will need 100+K SNPs to exploit haplotype information. Interpretation and transferability of genetic parameters will need to take into account the size of chromosomes in chicken, and, since most birds have microchromosomes, in other avian species as well.</p

    A Common Anterior Insula Representation of Disgust Observation, Experience and Imagination Shows Divergent Functional Connectivity Pathways

    Get PDF
    Similar brain regions are involved when we imagine, observe and execute an action. Is the same true for emotions? Here, the same subjects were scanned while they (a) experience, (b) view someone else experiencing and (c) imagine experiencing gustatory emotions (through script-driven imagery). Capitalizing on the fact that disgust is repeatedly inducible within the scanner environment, we scanned the same participants while they (a) view actors taste the content of a cup and look disgusted (b) tasted unpleasant bitter liquids to induce disgust, and (c) read and imagine scenarios involving disgust and their neutral counterparts. To reduce habituation, we inter-mixed trials of positive emotions in all three scanning experiments. We found voxels in the anterior Insula and adjacent frontal operculum to be involved in all three modalities of disgust, suggesting that simulation in the context of social perception and mental imagery of disgust share a common neural substrates. Using effective connectivity, this shared region however was found to be embedded in distinct functional circuits during the three modalities, suggesting why observing, imagining and experiencing an emotion feels so different

    Anxiety Disorders in Children and Adolescents with Autistic Spectrum Disorders: A Meta-Analysis

    Get PDF
    There is considerable evidence that children and adolescents with autistic spectrum disorders (ASD) are at increased risk of anxiety and anxiety disorders. However, it is less clear which of the specific DSM-IV anxiety disorders occur most in this population. The present study used meta-analytic techniques to help clarify this issue. A systematic review of the literature identified 31 studies involving 2,121 young people (aged <18 years) with ASD, and where the presence of anxiety disorder was assessed using standardized questionnaires or diagnostic interviews. Across studies, 39.6% of young people with ASD had at least one comorbid DSM-IV anxiety disorder, the most frequent being specific phobia (29.8%) followed by OCD (17.4%) and social anxiety disorder (16.6%). Associations were found between the specific anxiety disorders and ASD subtype, age, IQ, and assessment method (questionnaire versus interview). Implications for the identification and treatment of anxiety in young people with ASD are discussed

    Tissue engineering of functional articular cartilage: the current status

    Get PDF
    Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
    corecore